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Abstract
Excitonic effects on the third-harmonic-generation coefficient for disclike
parabolic quantum dots are studied, and an analytic formula for the third-
harmonic-generation coefficient is obtained by using the compact-density-
matrix approach and an iterative method. Numerical results are presented
for typical GaAs/AlGaAs parabolic quantum dots. The results show that the
third-harmonic-generation coefficient is greatly enhanced because the excitons
are localized in the quantum dots—it is over three times that obtained by just
considering electron states—and that it is very sensitively dependent on the
exciton confinement. In addition, the third-harmonic-generation coefficient is
related to the relaxation constant.

1. Introduction

Recently the excitonic states in semiconductor quantum wells, superlattices, and nanostructures
have attracted much attention from the fundamental physics viewpoint and also as regards
applied physics, owing to the enhanced excitonic optical nonlinearity and fast response
time [1, 2]. Excitons in quantum dots have been observed in photoluminescence experiments
performed on multidot samples [3] and single-dot samples [4].

In 1975, Esaki et al were the first to present the concept of quantum wires and dots [5].
With recent rapid advances of modern technology, it has now become possible to produce
quasi-zero-dimensional systems that confine electrons in all three spatial dimensions by using
techniques such as etching or using metal grid gates [6]. They typically have a disclike
shape, a few hundred nanometres in diameter and a few nanometres thick. In such nanometre
structures, electrons are not only confined in all three spatial dimensions, but also are quantized
into discrete energy levels, with energy spacings of a few meV or more [7]. Recently, the
quantum dots with (quasi-) 0D structures have become more and more important because of
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their novel physical properties and promise for potential applications. Sauvage and Boucaud
discussed nonlinear optical properties of quantum dots [8], but they did not consider excitonic
effects. However, in semiconductor quantum dots, carriers are confined in three spatial
dimensions, which substantially enhances the overlap between holes and electron clouds, and
leads to enhancement of the Coulomb binding energy and oscillator strength, so it is clearly
very important to consider excitonic effects. In 1988, Eiichi Hanamura studied theoretically
the nonlinear optical properties of semiconductor microcrystallites, and showed that optical
nonlinearities are very large when one considers exciton effects [9]. In 1993, Chen et al
discussed the third-order nonlinear optical susceptibility in Si quantum wires, and also obtained
enhancement of the nonlinear optical properties due to excitonic effects [10].

In this paper, excitonic effects on the third-harmonic generation in disclike parabolic
quantum dots are studied. These have rarely been discussed in the literature. In section 2 the
eigenfunctions and eigenenergies of the exciton states are obtained using the effective-mass
approximation, with centre-of-mass and relative coordinates. In section 3 an analytical formula
for the third-harmonic-generation coefficient is derived by using the compact-density-matrix
approach and an iterative method. In section 4 we calculate the third-harmonic-generation
coefficient for GaAs/AlGaAs parabolic quantum dots, and compare the results obtained
considering excitonic effects with the ones obtained without considering them. The results
show that the third-harmonic-generation coefficient is greatly enhanced when the exciton
states in the quantum dots are considered—it is over three times bigger than that obtained
when only considering electron states—and that it is very sensitively dependent on the exciton
confinement. In addition, the third-harmonic-generation coefficient is related to the relaxation
constant. Brief conclusions are given in section 5.

2. Excitons in parabolic quantum dots

The effective-mass Hamiltonian for an electron–hole pair in a parabolic quantum dot can be
written as

H = p2
e

2m∗
e

+
1

2
m∗

eω
2
0r

2
e +

p2
h

2m∗
h

+
1

2
m∗

hω
2
0r

2
h − e2

ε|re − rh| (1)

where m∗
e and m∗

h are the effective mass of the electron and hole, respectively. ω0 is the
frequency of the parabolic confining potential. The Coulomb interaction is screened by the
background dielectric constant ε. Since all of the first four terms in equation (1) are quadratic
and the Coulomb term depends only on the relative coordinate r = re − rh, it is easy to see
that the Hamiltonian is separable into terms in the relative coordinate r and centre-of-mass
coordinate R, defined by

r = re − rh R = m∗
ere + m∗

hrh

M
. (2)

We also define the total mass

M = m∗
e + m∗

h

and the reduced mass

µ = m∗
em

∗
h/M.

The electron and hole momenta pe and ph can be expressed in terms of the centre-of-mass
momentum, P = (h̄/i)∇R, and the relative momentum, p = (h̄/i)∇r, as

ph = −p + P
mh

M
pe = p + P

me

M
. (3)
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Substituting (2) and (3) in the Hamiltonian (1) yields

H = P 2

2M
+

1

2
Mω2

0R
2 +

p2

2µ
+

1

2
µω2

0r
2 − e2

ε|r| . (4)

The explicit separability of the r- and R-coordinates in (4) means that the exciton wave
function, ψ(re, rh), satisfying the Schrödinger equation

Hψ(re, rh) = Eψ(re, rh) (5)

can be written as

ψ(re, rh) = χ(R)ϕ(r). (6)

Obviously, χ(R) is the wave function of a two-dimensional (2D) harmonic oscillator,
which has been solved as

ER = (2n + |m| + 1)h̄ω0 (7)

χ(R) = 1√
2π

eimθ

[
2Mω0n!

h̄(|m| + n)!

]1/2

ρ|m|L|m|
n (ρ2)e−(1/2)ρ2

(8)

wherem = 0,±1,±2, . . ., n = 0, 1, 2, . . ., ρ = R
√
Mω0/h̄, andL|m|

n are associated Laguerre
polynomials.

The exciton energy can be written as the sum of the centre-of-mass part and the relative
motion part, namely as E = ER + Er. The problem now is reduced to solving the relative-
motion Hamiltonian

Hr = p2

2µ
+

1

2
µω2

0r
2 − e2

ε|r| . (9)

The Hamiltonian (9) contains two length scales. One is the size of the quantum dot,
defined by

R0 =
√
h̄/µω0. (10)

The other length scale is the exciton effective Bohr radius

a∗
B = εh̄2

µe2
. (11)

There are also two energy scales. One is the energy quantum due to confinement, h̄ω0,
which is related to R0 by

h̄ω0 = h̄2

µR2
0

. (12)

The other energy scale is the effective Rydberg [7]:

�∗ = e2

εa∗
B

= µe4

ε2h̄2 . (13)

The competition between the two length scales, or equivalently the competition between
the two energy scales, defines the strong-confinement regime, where R0 � a∗

B , or h̄ω0 	 �∗,
and the weak-confinement regime, where R0 	 a∗

B , or h̄ω0 � �∗. In the following, we will
discuss the two cases individually.

In the strong-confinement regime where the Coulomb term is neglected, we have a
harmonic oscillator. The eigenenergies and eigenstates of a 2D harmonic oscillator in terms
of polar coordinates, angular momentum quantum number m, and radial quantum number n
are given by

Enm = (2n + |m| + 1)h̄ω0 (14)
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ϕ(r) = 1√
2π

eimθ

[
2µω0n!

h̄(|m| + n)!

]1/2

ρ|m|L|m|
n (ρ2)e−(1/2)ρ2

(15)

where m = 0,±1,±2, . . ., n = 0, 1, 2, . . ., ρ = r
√
µω0/h̄, and L

|m|
n are associated Laguerre

polynomials.
In the weak-confinement regime where the parabolic confinement term is neglected,

we have a hydrogenic problem; therefore the Hamiltonian (9) can be simplified as Hr =
p2/2µ− e2/εr . The Schrödinger equation for the 2D hydrogenic Hamiltonian is now exactly
solvable, giving energy eigenvalues and eigenfunctions [7] as follows:

Er = − �∗

2(n + |m| + 1
2 )

2
(16)

ϕ(r) = 1√
2π

eimθCnmRnm(r) (17)

Rnm(r) = ρ|m|L|2m|
n (ρ)e−ρ/2 (18)

ρ = 2r

a∗
B(n + |m| + 1

2 )
(19)

Cnm = 4

a∗
B

[
n!

(n + 2|m|)!(2n + 2|m| + 1)3

]1/2

(20)

where m = 0,±1,±2, . . ., n = 0, 1, 2, . . ..

3. Third-harmonic generation in parabolic quantum dots

Next we will discuss the expression for the third-harmonic-generation coefficient in this model.
Let us consider an electromagnetic field with frequency ω which is incident with a polarization
vector normal to the quantum dot. The system is excited by an electromagnetic field

E(t) = E0 cosωt = Ẽeiωt + Ẽe−iωt . (21)

Let ρ denote the one-electron density matrix for this regime. Then the evolution of the
density matrix ρ obeys the following time-dependent equation:

∂ρij /∂t = (ih̄)−1 [H0 − qrE(t), ρ]ij − !ij (ρ − ρ(0))ij (22)

where H0 is the Hamiltonian for this system without the electromagnetic field E(t); q is the
electronic charge; ρ(0) is the unperturbed density matrix; !ij is the relaxation rate. Equation
(22) is solved using the usual iterative method [11, 12]:

ρ(t) =
∑
n

ρ(n)(t) (23)

with

∂ρ
(n+1)
ij /∂t = (ih̄)−1

{[
H0, ρ

(n+1)
]
ij

− ih̄!ijρ
(n+1)
ij

}
− (ih̄)−1

[
qr, ρ(n)

]
ij
E(t). (24)

The electronic polarization of the quantum dots will also be a series expansion like equation
(23). We shall limit ourselves to considering the first three orders, i.e.,

P(t) = (ε0χ
(1)E0eiωt + ε0χ

(2)
2ω E

2
0e2iωt + ε0χ

(3)
3ω E

3
0e3iωt ) + c.c. (25)
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where χ(1), χ(2)
2ω , and χ

(3)
3ω are the linear, second-harmonic-generation, and third-harmonic-

generation coefficients, respectively. ε0 is the vacuum permittivity. The electronic polarization
of nth order is given by

P (n)(t) = 1

S
Tr(ρ(n)qr) (26)

where S is the area of interaction.
In this paper we shall focus on the third-harmonic generation; we can treat H ′ = qrE(t)

as a perturbation term. By using the same compact-density-matrix approach and iterative
procedure as references [11, 12], we find that the third-harmonic-generation coefficient is
given by

χ
(3)
3ω = q4

ε0h̄
3

∑
i

∑
k

µki

3ω − ωki − i!ki

∑
l

∑
j

[
µilµljµjk(ρk − ρj )

(2ω − ωkl − i!kl)(ω − ωkj − i!kj )

− µilµljµjk(ρj − ρl)

(2ω − ωkl − i!kl)(ω − ωjl − i!jl)
− µijµjlµlk(ρl − ρj )

(2ω − ωli − i!li)(ω − ωlj − i!lj )

+
µijµjlµlk(ρj − ρi)

(2ω − ωli − i!li)(ω − ωji − i!ji)

]
(27)

where i, k, l, j = 0, 1, 2, 3.
If the condition of two-photon resonance can be met, equation (27) can be simplified as

χ
(3)
3ω = q4µ01µ12µ23µ30ρs

ε0h̄
3

[
1

(3ω − ω21 − i!21)(2ω − ω20 − i!20)(ω − ω23 − i!23)

+
1

(3ω − ω21 − i!21)(2ω − ω20 − i!20)(ω − ω30 − i!30)

+
1

(3ω − ω23 − i!23)(2ω − ω20 − i!20)(ω − ω10 − i!10)

+
1

(3ω − ω30 − i!30)(2ω − ω20 − i!20)(ω − ω21 − i!21)

+
1

(3ω − ω30 − i!30)(2ω − ω31 − i!31)(ω − ω21 − i!21)

+
1

(3ω − ω01 − i!01)(2ω − ω31 − i!31)(ω − ω32 − i!32)

+
1

(3ω − ω21 − i!21)(2ω − ω31 − i!31)(ω − ω30 − i!30)

+
1

(3ω − ω21 − i!21)(2ω − ω31 − i!31)(ω − ω01 − i!01)

]
(28)

where ρs is the density of excitons in the quantum dots, ε0 is the vacuum permittivity,
ωij = (Ei − Ej)/h̄ is the Bohr frequency, µij = |〈ψj |r|ψi〉| is the off-diagonal matrix
element (i, j = 0, 1, 2, 3).

4. Results and discussion

In the following, we will discuss the third-harmonic-generation coefficient χ(3)
3ω for GaAs/

AlGaAs parabolic quantum dots in the weak-confinement and strong-confinement regimes.
The parameters used in our numerical work are adopted as [13]: m∗

e = 0.067m0, m∗
h = 0.09m0

(m0 is the mass of a free electron), ρs = 5 × 1024 m−3, h̄!10 = h̄!21 = h̄!32 = h̄! meV,
h̄!20 = h̄!31 = h̄!/2 meV, h̄!30 = h̄!/3 meV, ε = 13.1.
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4.1. Weak-confinement regime

In the weak-confinement regime, the frequency ω0 of the parabolic confining potential should
meet the criterion ω0 � 1.0 × 1013 s−1.

Figure 1 shows the third-harmonic-generation coefficient χ(3)
3ω as a function of the photon

energy hν for four different values of relaxation constant h̄! with ω0 = 1.0 × 1012 s−1:
(a) h̄! = 0.45 meV, (b) h̄! = 0.65 meV, (c) h̄! = 1.5 meV, (d) h̄! = 3.5 meV, which are
illustrated by the solid line, dotted line, dash–dotted line, and dashed line, respectively. It is
obvious that there is a maximum peak value at hν = 5.3 meV, which originates from the three-
photon resonance enhancement. We also observe another peak which starts at hν = 7.2 meV;
this peak is mainly due to the two-photon resonance enhancement. A very important feature
is that the smaller the relaxation constant h̄! is, the sharper the peak will be and the bigger
the peak intensity will be. Also, when the relaxation constant h̄! = 3.5 meV, the two-photon
resonance will disappear, and the three-photon resonance will become not very obvious.
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Figure 1. The third-harmonic-generation coefficient |χ(3)
3ω | versus the photon energy hν for

four different values of the relaxation constant h̄!: (a) h̄! = 0.45 meV, (b) h̄! = 0.65 meV,
(c) h̄! = 1.5 meV, (d) h̄! = 3.5 meV, which are illustrated by the solid line, dotted line, dash–
dotted line, and dashed line, respectively.

Figure 2 shows the third-harmonic-generation coefficient χ
(3)
3ω as a function of the

frequency ω0 of the parabolic confining potential with the relaxation constant h̄! = 0.45 meV
at the two-photon resonance. From figure 2, we can see that χ(3)

3ω will increase when the
frequency ω0 increases.

4.2. Strong-confinement regime

In the strong-confinement regime, the frequency ω0 of the parabolic confining potential should
meet the criterion ω0 	 1.0 × 1013 s−1. In the following, we mainly discuss the two-photon
resonance enhancement.
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Figure 2. The third-harmonic-generation coefficient |χ(3)
3ω | versus the frequencyω0 of the parabolic

confining potential with the relaxation constant h̄! = 0.45 meV at the two-photon resonance.

Figure 3 shows the third-harmonic-generation coefficient χ
(3)
3ω as a function of the

photon energy hν for three different values of the parabolic confinement frequency ω0:
(a) ω0 = 1.0 × 1014 s−1, (b) ω0 = 2.0 × 1014 s−1, (c) ω0 = 3.0 × 1014 s−1. We observe
three peaks which start at hν = 0.132 eV, hν = 0.263 eV, hν = 0.395 eV, respectively. A
very important feature is that the weaker the parabolic confinement is, the sharper the peak
will be and the bigger the peak intensity will be. As the parabolic confinement frequency ω0

increases, the peak will move to the right of the curve, which predicts a strong-confinement-
induced blue-shift of the exciton resonance in semiconductor quantum dots in accordance with
the recent experimental results [14]. These features make the parabolic quantum dots very
promising candidates for nonlinear optical materials applications.

In figure 4, the third-harmonic-generation coefficient χ(3)
3ω is plotted as a function of the

photon energy hν with the relaxation constant h̄! = 0.45 meV and ω0 = 1.0 × 1014 s−1, for
two cases: considering excitonic effects and not considering excitonic effects. From figure 4
we can see that the third-harmonic-generation coefficient χ(3)

3ω obtained considering excitonic
effects is over three times larger than that obtained without considering excitonic effects—only
considering electron states. The reason is that carriers in the semiconductor quantum dots are
confined in three spatial dimensions, which substantially enhances the overlap between holes
and electron clouds, and leads to enhancement of the Coulomb binding energy. Therefore
it is apparently very important to take the excitonic effects into account when we study the
third-harmonic-generation coefficient for quantum dots.

Figure 5 shows the third-harmonic-generation coefficient χ
(3)
3ω as a function of the

frequency ω0 with the relaxation constant h̄! = 0.45 meV, also for two cases: considering
excitonic effects and not considering excitonic effects, which are illustrated by the solid line
and dashed line, respectively. From figure 5 we can see that χ(3)

3ω will increase when the
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Figure 3. The third-harmonic-generation coefficient |χ(3)
3ω | versus the photon energy hν for

three different values of the parabolic confinement frequency ω0: (a) ω0 = 1.0 × 1014 s−1,
(b) ω0 = 2.0 × 1014 s−1, (c) ω0 = 3.0 × 1014 s−1.
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Figure 4. Frequency dispersion of the third-harmonic-generation coefficient |χ(3)
3ω | with the

relaxation constant h̄! = 0.45 meV, considering excitonic effects (solid line) and without
considering excitonic effects (dashed line).
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Figure 5. The third-harmonic-generation coefficient |χ(3)
3ω | versus the frequencyω0 of the parabolic

confining potential with the relaxation constant h̄! = 0.45 meV, considering excitonic effects (solid
line) and not considering excitonic effects (dashed line).

frequency ω0 decreases, which is just the opposite to what happens in the weak-confinement
regime. For the case where we consider excitonic effects, χ(3)

3ω will increase more quickly
as ω0 decreases than in the case where we do not consider excitonic effects; also, the third-
harmonic-generation coefficient χ(3)

3ω obtained when considering excitonic effects is over three
times larger than that obtained when excitonic effects are not considered. From figure 2 and
figure 5, we can also see that the third-harmonic-generation coefficients χ

(3)
3ω are essentially

identical at the transition frequency ω0 = 1.0 × 1013 s−1.

5. Conclusions

We present a simple and straightforward study of the third-harmonic-generation coefficient
for a nanometre-size parabolic quantum dot. The results show that the theoretical value of the
third-harmonic-generation coefficient χ(3)

3ω is greatly enhanced due to the excitonic effects and
that χ(3)

3ω is very sensitively dependent on the exciton confinement. In the weak-confinement
regime, χ(3)

3ω is over two orders of magnitude higher than that in the strong-confinement regime.
Also, the smaller the relaxation constant h̄! is, the sharper the peaks will be and the bigger the
peak intensities will be. However, the relaxation constant h̄! is related not only to the quantum
dot material and confining potential, but also to other factors, such as temperature, boundary
conditions, and electron–electron and exciton–exciton interactions. Therefore, theoretical
study may make a great contribution to experimental studies, may have profound consequences
as regards improvements of practical devices such as ultrafast optical switches, and may open
up new opportunities for practical exploitation of the quantum-size effect in devices.
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